### **Neural Machine Translation: an Overview**

Marco Dinarelli Researcher of the National Council of Scientific Research (CNRS in France) Laboratoire d'Informatique de Grenoble (LIG) https://fr.wikipedia.org/wiki/Laboratoire\_d%27informatique\_de\_Grenoble Getalp group

LIG

### Outline

- Statistical Machine Translation (SMT)
- Neural Machine Translation (NMT)
- SMT/NMT Evaluation
- Document-Level NMT (CA-NMT)
- CA-NMT Evaluation
- Explainability
- Conclusions

### A bit of symbols

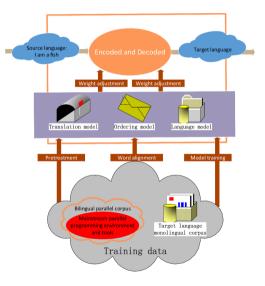
- x: input data, e.g. like in y = f(x)
- y: output data
- s: source symbol (input data as well)
- *t*: target symbol (output data)
- *h*: hidden state
- *P*: probability (model)

Same symbols in uppercase: sequences. E.g. *T*: sequence of target symbols

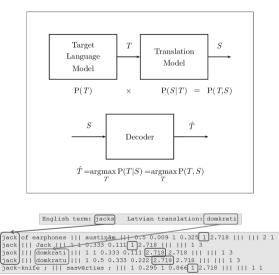
Same symbols with  $\tilde{}$  or  $\hat{}$ : model's predictions (or *hypothesis*). E.g.  $\hat{T}$ : model's translation for T.

## **Statistical Machine Translation**

### The Dark Ages: Statistical Machine Translation (SMT)



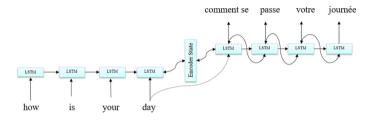
### SMT: more formally ...



#### Source: https://www.researchgate.net

### **Neural Machine Translation**

### Neural Machine Translation (NMT): The Origin (2014)



LSTM Recurrent Unit

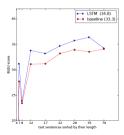
Source: https://www.researchgate.net

### **NMT (continued)**

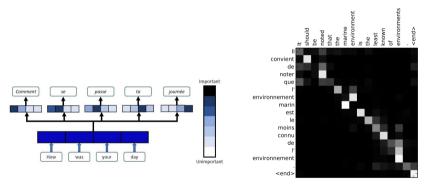
$$p(y_t|\{y_1, \dots, y_{t-1}\}, c) = g(y_{t-1}, s_t, c)$$

(1)

| Method                                     | test BLEU score (ntst14) |
|--------------------------------------------|--------------------------|
| Bahdanau et al. [2]                        | 28.45                    |
| Baseline System [29]                       | 33.30                    |
| Single forward LSTM, beam size 12          | 26.17                    |
| Single reversed LSTM, beam size 12         | 30.59                    |
| Ensemble of 5 reversed LSTMs, beam size 1  | 33.00                    |
| Ensemble of 2 reversed LSTMs, beam size 12 | 33.27                    |
| Ensemble of 5 reversed LSTMs, beam size 2  | 34.50                    |
| Ensemble of 5 reversed LSTMs, beam size 12 | 34.81                    |

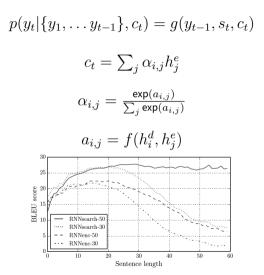


### The Attention Mechanism (2014)

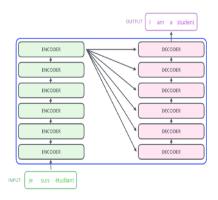


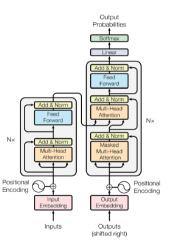
Source: https://teksands.ai

### The Attention Mechanism (continued)



### The Transformer Model (2017)





### The Transformer Model (continued)

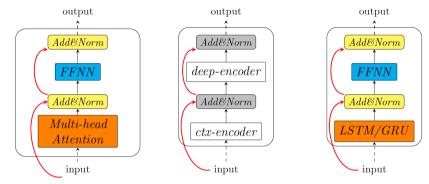
The (self/cross) attention mechanism:

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

### The Transformer Model (continued)

| Layer Type                  | Complexity per Laye      | er Sequent<br>Operatio |                     | ım Path Lengtl        |  |
|-----------------------------|--------------------------|------------------------|---------------------|-----------------------|--|
| Self-Attention              | $O(n^2 \cdot d)$         | O(1)                   |                     | O(1)                  |  |
| Recurrent                   | $O(n \cdot d^2)$         | O(n)                   |                     | O(n)                  |  |
| Convolutional               | $O(k \cdot n \cdot d^2)$ | O(1)                   | 0                   | $(log_k(n))$          |  |
| Self-Attention (restricted) | $O(r \cdot n \cdot d)$   | O(1)                   |                     |                       |  |
| Madal                       | BI                       | BLEU                   |                     | Training Cost (FLOPs) |  |
| Model                       | EN-DE                    | EN-FR                  | EN-DE               | EN-FR                 |  |
| ByteNet [18]                | 23.75                    |                        |                     |                       |  |
| Deep-Att + PosUnk [39]      |                          | 39.2                   |                     | $1.0 \cdot 10^{20}$   |  |
| GNMT + RL [38]              | 24.6                     | 39.92                  | $2.3 \cdot 10^{19}$ | $1.4 \cdot 10^{20}$   |  |
| ConvS2S [9]                 | 25.16                    | 40.46                  | $9.6 \cdot 10^{18}$ | $1.5 \cdot 10^{20}$   |  |
| MoE [32]                    | 26.03                    | 40.56                  | $2.0 \cdot 10^{19}$ | $1.2 \cdot 10^{20}$   |  |
| Deep-Att + PosUnk Ense      | mble [39]                | 40.4                   |                     | $8.0 \cdot 10^{20}$   |  |
| GNMT + RL Ensemble [        | 38] 26.30                | 41.16                  | $1.8\cdot 10^{20}$  | $1.1\cdot 10^{21}$    |  |
| ConvS2S Ensemble [9]        | 26.36                    | 41.29                  | $7.7\cdot10^{19}$   | $1.2\cdot 10^{21}$    |  |
| Transformer (base model     | ) 27.3                   | 38.1                   | 3.3 •               | 10 <sup>18</sup>      |  |
| Transformer (big)           | 28.4                     | 41.8                   | $2.3 \cdot$         | $10^{19}$             |  |

### **Encoder-Decoder Architecture (2014 - Present)**



The contextual-encoder (ctx-encoder) can be any of:

- Recurrent layer (LSTM/GRU)
- Attention layer
- Convolutional layer

### **NMT: in summary**

- 1. Conceptually (mathematically ?) simpler P(y|h), that's all vs. SMT:  $P(S,T) \times P(T)$ ;  $P(S,T) = \prod_{i=1}^{N} P(y_i|y_{i-1}, y_{i-2} \dots x_1, \dots x_M) \dots$
- 2. Very effective:
  - SOTA in many domains
  - LLMs (AI!)
- Less *explicit* behavior: "Black-box models" ⇒ Explainability research axis
- 4. Examples of tools/systems:
  - SMT: Moses, Google translate
  - NMT: DeepL, Google translate (!)

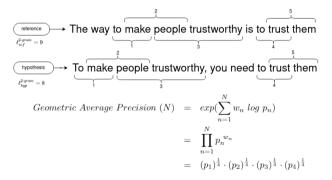
## **Evaluation**

### **Evaluation Measure**

- *T*: what you wanted the model to predict **Reference** (or *gold standard, ground truth,* whatever...)
- $\hat{T}$ : what the model predicted **Hypothesis**
- Evaluation measure for MT:  $f(T, \hat{T})$ The higher the better (for most metrics...)

### **Evaluation Measure: n-gram matches**

BLEU: Bi-Lingual Evaluation Understudy (2002)



Source: https://clementbm.github.io

### **Evaluation Measure: edit-distance based**

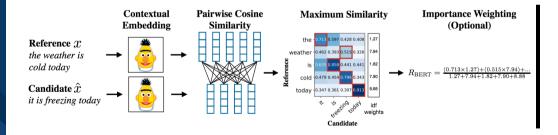
TER: **T**ranslation **E**dit **R**ate (2006) Same idea as edit distance (plus a shift)



Source: https://www.ritambhara.in

### **Evaluation Measure: deep embeddings**

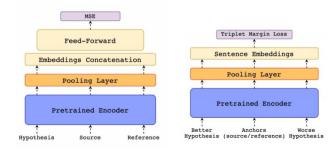
#### BERTscore (2020) Similar idea as edit distance, but tokens are deep representations



### **Evaluation Measure: learned "metrics"**

COMET: Crosslingual Optimized Metric for Evaluation of Translation (2020)

- 1. Predicts human judgments
- 2. Ranks "better" hypotheses
- 3. There's a version without Reference (QE)



### The "Human-Level Quality" Debate (2018)

*Hassan et al.* (2018) paper: "Achieving Human Parity on Automatic Chinese to English News Translation"

 $\rightarrow$  raised the debate



*Toral et al.* (2018) paper: "Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation"

- $ightarrow \mathit{critized}$  Hassan's et al. evaluation method
- $\rightarrow$  basically gave birth to <code>Document-Level NMT !</code>

# Document-Level Neural Machine Translation

### **Document-Level or Context-Aware NMT ?**

- Document-Level means the whole document is used as context
- In practice: few sentences are used as context
  - Is the rest relevant?
  - Computationally feasible  $\rightarrow$  beyond LLMs

#### $\Rightarrow$ Context-Aware NMT (CA-NMT)

### CA-NMT: two main (specific) solutions

- Concatenation models
- Multi-encoder models
- +
- LLMs (not specific)

### **CA-NMT: concatenation approach**

#### - Standard Transformer architecture

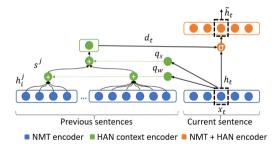
- Just take N concatenated source/target sentences

+10

 $\frac{1}{\text{CD} \cdot \mathcal{L}_{context}} + \frac{15}{\mathcal{L}_{current}} \frac{16}{17} \frac{18}{19} \frac{19}{19}$ 

### **CA-NMT: multi-encoder approach**

- Transformer with additional attention mechanisms



## **CA-NMT Evaluation**

### Traditional quantitative evaluation

| NMT model / Metric | BLEU  | COMET | ChrF  | TER   |
|--------------------|-------|-------|-------|-------|
| Multi-encoder      | 32.17 | 0.83  | 59.04 | 56.53 |
| Concat*            | 32.08 | 0.81  | 58.62 | 57.38 |

#### **Contrastive Test suites**

| source sentence with antecedent<br>target sentence with antecedent<br>source context | What's with the door?<br>Was ist mit der Tür?<br><b>It</b> won't open. |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| reference context                                                                    | <b>Sie</b> geht nicht auf.                                             |
| source sentence                                                                      | - Is <b>it</b> locked?                                                 |
| reference sentence                                                                   | - Ist <b>sie</b> abgeschlossen?                                        |
| contrastive 1                                                                        | - Ist er abgeschlossen?                                                |
| contrastive 2                                                                        | - Ist es abgeschlossen?                                                |
|                                                                                      | ana wala ana ta wat                                                    |

Source: https://www.researchgate.net

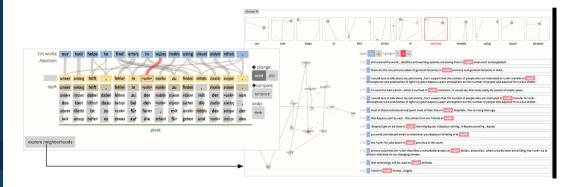
### **CA-NMT Evaluation with Contrastive Test Suites**

| NMT model                        | ContraPro Accuracy |
|----------------------------------|--------------------|
| Baseline                         | 45.00              |
| (Zhang et al., 2018)             | 42.60              |
| (Tu et al. 2018)*                | 45.20              |
| (Muller et al., 2018a) concat21  | 48.00              |
| (Muller et al., 2018a) concat22* | 70.80              |
| (Maruf et al., 2019)*            | 39.15              |
| (Voita et al., 2018)             | 42.55              |
| (Stovanojski et al., 2019)       | 52.55              |
| (Muller et al., 2018b)* best     | 58.13              |
| Multi-encoder                    | 61.09              |
| Concat*                          | 74.39              |

# Explainability

### Neural models are (very) powerful...

## But are they explainable ? $\rightarrow$ *Black box* models



### Main research axes

- Faithfullness: make the model's predictions coherent with its behavior
- Plausibility: are model's predictions explainable by its behavior?

### **Our contribution within MAKENMT-Viz**

"Context-Aware Neural Machine Translation Analysis and Evaluation Through Attention". *Dinarelli et al.*, French journal TAL, 2024.

The idea: providing an explicit evaluation on discourse phenomena How ? Using attention weights over coreference links

Data: ParCorFull 2.0 Parallel corpus (English, French, German, Portuguese) annotated with coreferences

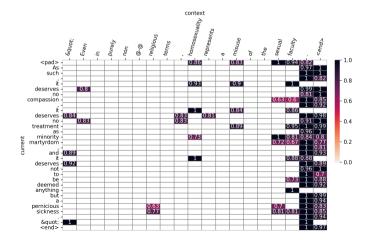
The procedure:

- Translate the data with CA-NMT (En-De)
- Align CA-NMT input/output with corpus input/output
- Score coreference links (attention weights)

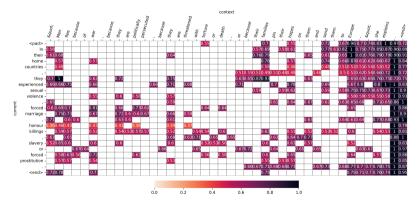
Two evaluation: quantitative.

| NMT model / Metric  | Max-weight | Non-zero weight | Average weight |
|---------------------|------------|-----------------|----------------|
| Multi-encoder (src) | 45.91%     | 88.83%          | 0.8183         |
| Concat (src)        | 10.45%     | 50.98%          | 0.2994         |
| Concat (tgt)        | 13.25%     | 33.22%          | 0.2136         |

Two evaluation: qualitative.



Qualitative evaluation: an interesting example 1/2:



Qualitative evaluation: an interesting example 2/2:

