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ABSTRACT

Self-Supervised Learning (SSL) has proven to be effective
in various domains, including speech processing. However,
SSL is computationally and memory expensive. This is in
part due the quadratic complexity of multi-head self-attention
(MHSA). Alternatives for MHSA have been proposed and
used in the speech domain, but have yet to be investigated
properly in an SSL setting. In this work, we study the ef-
fects of replacing MHSA with recent state-of-the-art alter-
natives that have linear complexity, namely, HyperMixing,
Fastformer, SummaryMixing, and Mamba. We evaluate these
methods by looking at the speed, the amount of VRAM con-
sumed, and the performance on the SSL MP3S benchmark.
Results show that these linear alternatives maintain competi-
tive performance compared to MHSA while, on average, de-
creasing VRAM consumption by around 20% to 60% and in-
creasing speed from 7% to 65% for input sequences ranging
from 20 to 80 seconds.

Index Terms— self-supervised learning, speech, effi-
ciency, linear complexity

1. INTRODUCTION

Self-supervised learning (SSL) is an approach to training
machine learning models where pseudo-targets are extracted
from the data itself. Since SSL is unsupervised, these models
can be pre-trained on immense amounts of unlabeled data,
and then obtain good results on downstream tasks using min-
imal amounts of labeled data. SSL methods have proven to
be useful in a variety of domains including in speech process-
ing [1], where SSL has reached state-of-the-art performance
in tasks like Automatic Speech Recognition (ASR) [2], Emo-
tion Recognition (ER) [2], Automatic Speaker Verification
(ASV) [2], Spoken Language Understanding (SLU) [2], and
Automatic Speech Translation (AST) [3, 4].

Despite their performance, training SSL models is still
very costly in terms of the amount of data, GPUs, and time
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needed. For example, Google USM was trained on 12 mil-
lion hours (or over 1,369 years) of audio [5], and the base and
large XLS-R models were trained with 128 and 200 GPUs, re-
spectively [4]. Even in efforts to make state-of-the-art models
like HuBERT and data2vec more efficient, these SSL models
still require around 1,000 A100 GPU hours of training [6, 7].

In a study of the architectures of SSL models for speech [8],
the authors identified three main culprits: (i) the Acoustic
Feature Extractor (AFE), which transforms the raw wave-
form into a latent representation; (ii) the context encoder,
which is often a large Transformer [9] or Conformer [10];
and (iii) the SSL training objective.

When looking at these three culprits, BEST-RQ [11]
seems to be theoretically one of the most efficient SSL mod-
els for speech that has been proposed. BEST-RQ starts
with Mel Filterbanks, addressing culprit (i). Then, it creates
pseudo labels using a frozen, randomly initialized linear pro-
jection and codebook coupled with cross-entropy training,
addressing culptrit (iii). In contrast, other models, such as
wav2vec 2.0 [12], use a learnable codebook and typically
use a combination of objectives, slowing down training. For
instance, previous studies showed that BEST-RQ obtain com-
parable downstream performance to wav2vec 2.0 while being
2.4 times faster to train [13]. However, for culprit (ii), the
context encoder, BEST-RQ uses Conformer layers, which are
computationally expensive.

Conformers, like transformers, are expensive partly due
to multi-head self-attention (MHSA) time complexity being
quadratic with respect to the input sequence length. There-
fore, to address culprit (ii), one needs to search for an ef-
ficient alternative to MHSA. Many studies have been con-
ducted to reduce the complexity of MHSA, but only few have
been applied to speech tasks and none have have been applied
to SSL for speech. Examples of such methods include Hy-
perMixing [14], Fastformer [15], SummaryMixing [16], and
Mamba [17].

The main contribution of this work is to address cul-
prit (ii) by, for the first time, evaluating the most promising
linear time complexity alternatives to MHSA in an SSL for
speech setting. Downstream experiments conducted fol-
lowing the MP3S benchmark [18] show that our linear-time
complexity BEST-RQ maintains performance with an equiva-
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lent MHSA BEST-RQ while decreasing VRAM consumption
by around 20% to 60% and increasing inference speed from
7% to 65% for input sequences from 20 to 80 seconds. As a
second contribution, we open-source the code in the widely
used SpeechBrain toolkit [19], enabling the community to
experiment with efficient SSL models for speech1.

2. BACKGROUND

Multi-head self-attention (MHSA) has quadratic time com-
plexity with respect to the input length due attention weights
being calculated by a dot product between every query-key
token pair. Despite its complexity, this dot product operation
enables each token to access the global context which is im-
portant for reaching high performance [9].

In research on reducing the complexity of MHSA, there
are two overarching methods: (i) those aiming to approximate
this pair-wise token computation with a lower cost, and (ii)
those that do not seek to mimic this pair-wise token computa-
tion, but instead introduce global context in another fashion.

Some methods in the first family include sparse attention,
such as BigBird and Longformer [20, 21], which use a com-
bination of sliding window, global, and random attention to
achieve linear complexity. The main issue with these sparse
attention methods is that they cannot fully model global con-
text as they operate on windows. Other methods in this fam-
ily, such as Linformer and Linear Transformer [22, 23] ap-
proximate attention by computing low-rank approximates of
the key and value matrices or use the dot-product of ker-
nel feature maps and make use of the associative property
to achieve linear complexity. Yet, in practice, the aforemen-
tioned methods are still computationally expensive [15].

In contrast, Fastformer [15] has proven to perform well
on text data, outperforming previously mentioned sparse at-
tention methods and low-rank approximates. This is done by
making use of additive attention and element-wise multipli-
cation to summarize the query and key matrices as vectors re-
sulting in linear complexity while fully modeling global con-
text. Fastformer has also been applied to speech and proved
to work well on ASR tasks with the branchformer architec-
ture [24]. Due to these performances and the availability of
its implementation, Fastformer is considered as a good repre-
sentative candidate of the first family of methods.

The other family of solutions, which do not aim to ap-
proximate the self-attention mechanism, include, HyperMix-
ing [25], SummaryMixing [16], and Mamba [17]. HyperMix-
ing was first introduced with the HyperMixer [25]. The Hy-
perMixer is an extension of the MLPMixer [26]. The disad-
vantage of MLPMixer is that it can not handle inputs of vary-
ing length, making it not suitable for NLP or speech tasks.
HyperMixer extends MLPMixer by using hypernetworks [27]
to capture global context for inputs that vary in length. Hy-

1https://github.com/whettenr/brq-att-alt-exp

perMixer proved to have good performance on text tasks and
fully-supervised ASR with the HyperConformer [25, 14].

Alternatively, SummaryMixing does not use hypernet-
works, but instead the input is passed through a parametrized
function, such as a multi layer perceptron, which is averaged
across all time steps, resulting in a summary vector. To in-
troduce global context to the input sequence, this summary
vector is concatenated to the input at each time step and then
fed through another parametrized function, which becomes
the final output. SummaryMixing proved to perform just as
well as MHSA on ASR, keyword spotting, and SLU, while
decreasing the amount of required memory and training time.

Lastly, Mamba is a method for sequence modeling based
on state space models [17]. State space models can be thought
of as a combination of recurrent neural networks and convo-
lutional neural networks, which scale linearly with respect to
the sequence length. Mamba has shown good performance
on text, audio (which were in an auto regressive SSL setting),
and a two supervised speech tasks [28]: ASR and speech en-
hancement. HyperMixing, SummaryMixing, and Mamba all
have available implementations, and are therefore selected as
representatives of the second family of methods.

Despite the good performance of these substitutes for
MHSA on supervised tasks, their performance in an SSL set-
ting for speech tasks has not yet been studied, and the focus
of these studies has been mostly on ASR. Furthermore, these
methods have not been scaled to large models, e.g. from only
about 5 to 100M parameters for speech tasks [14, 16, 24, 28],
which contrasts with the current scale of SSL models. Thus,
in this work we explore these unexamined aspects of linear
complexity alternatives by (i) experimenting in an SSL set-
ting, (ii) looking at performance on a variety of speech tasks
using a benchmark from the community, and (iii) scaling up
model size to above 300M parameters.

3. ATTENTION ALTERNATIVES IN BEST-RQ

In this section, we give an overview of BEST-RQ and de-
scribe how Fastfastformer, SummaryMixing, HyperMixing,
and Mamba achieve linear complexity. Let us define the input
to the self-attention module as X ∈ RT×d = [x1,x2, ...,xT ]
or a sequence of vectors of dimension d with T time steps.
The difference between methods lies in how this input is
transformed to contain information about the global context.

BEST-RQ is, to this day, the most efficient SSL paradigm.
It is notably used by large scale models such as Google
USM [5] and Universal-1 from AssemblyAI. BEST-RQ be-
gins with Mel Filterbanks which are passed through two
paths, (i) the model, and (ii) the random-projection quantizer.
For path (i), a random portion of the Mel Filterbanks are
masked and then passed through two convolutional layers, a
series of conformer layers, and then a linear layer. For path
(ii) the unmasked Mel Filterbanks are passed through a ran-
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domly initialized frozen linear layer. Then a codebook look
up is performed following:

y = argmin
i

∥norml2(ci)− norml2(Am)∥ , (1)

where m is a stacked portion of four Mel Filterbank
frames, A is the linear projection, and c is the codebook. The
index, y, from this codebook look up is used as the pseudo-
target for pre-training for that portion of the input. Then, the
cross-entropy loss is calculated between the masked sections
of the output of the linear layer from the path (i) and the
corresponding pseudo-targets from path (ii). BEST-RQ orig-
inally uses self-attention and, therefore, exhibits quadratic
time complexity.

Fastformer. The complexity is reduced to linear by using ad-
ditive attention to summarize the attention matrices as a sin-
gle vector. To show how this is done, let Q,K ∈ RT×d, be
the standard linear transformations from the transformer com-
posed of Q = [q1,q2, ...,qT ] and K = [k1,k2, ...,kT ]. Q is
summarized as a query vector q by the following:

αt = softmax(
wT

q qt√
d

); q =

T∑
t=1

αtqt. (2)

where wq ∈ Rd is a learnable vector used with each
vector of Q to generate the attentions score αt. The summary
query vector q is calculated as a weighted some of the at-
tention scores with their respective qt. Then, q is multiplied
by each vector in K, resulting in a global context-aware key
matrix that relies on the more efficient element-wise multipli-
cation instead of dot products.

HyperMixing reduces the complexity by using a token mix-
ing multi-layered perceptron (TM-MLP) from the MLP-
Mixer [16], which can be described as:

TM-MLP(X) = LayerNorm(W1(σ(W
T
2 X

T ))), (3)

where W1, W2 are weight matrices and σ represents some
non-linear activation function. This is a standard MLP ex-
cept the linear operations are performed on the transposed
X. This can be taught of as operating on the tokens instead
of the channels which introduces global context as it allows
information to pass between tokens. The key difference be-
tween MLP-Mixer and HyperMixing is that W1and W2 are
generated by another MLP and thus can vary in length.

SummaryMixing. The input, X, is passed into two functions
f and s taking the form, in practice, of two MLPs. The output
of s is averaged across all time steps, resulting in a summary
vector s̄. To introduce global context to the input sequence,
s̄ is concatenated to the output of f at each time step, t, and

then fed through another function, or MLP in this case, called
c. The output of c becomes the final output h. The overall
SummaryMixing mechanism can be expressed as:

s̄ =
1

T

T∑
t=1

s(xt); h = c(f(X), s̄). (4)

Calculating the summary vector s̄ is an average and thus
is linear with respect to the input length. As a result, Sum-
maryMixing is able to introduce global context with linear
complexity.
Mamba. The memory complexity is reduced to linear by
processing the input sequence in an unidirectional manner
similar to a recurrent network. Being a selective state space
model, Mamba represents the past information of X as an hid-
den state ht with constant memory consumption, hence solv-
ing the problematic quadratic time complexity from MHSA.
To do so, the model employs a discretized state transition
matrix Ā ∈ RN×N , an input discretized projection matrix
B̄ ∈ RH×1, and an output projection matrix C ∈ R1×H to
compute the hidden state ht as follow:

ht = Āht−1 + B̄Xt, yt = Cht. (5)

To reduce the computation overhead brought by the recur-
rence, an hardware-aware parallel scan algorithm introduced
in [17] allows to unroll equation 5 as the input sequence X
convolved with a structured kernel composed of Ā, B̄, and
C fixed. With this improvement, the throughput of Mamba
is five times higher than a Transformer. Finally, to introduce
global context to the model, similar to MHSA, we use a bidi-
rectional Mamba as motivated by [28].

4. EXPERIMENTS

In this section, we describe our SSL pre-training protocol and
summarize the downstream tasks, giving a brief overview of
the datasets and evaluation metrics for each task.

4.1. Self-supervised Pre-training

All models are open-sourced in the SpeechBrain [19] library
along with the hyperparameters for each model.

Architecture details. We use the implementation of BEST-
RQ from [13] which uses Conformer layers [10] with relative
sinusoidal positional embedding and the PyTorch multi-head
self-attention. For all models the pre-training framework
stays the same. We only replace the MHSA cell with either
Hypermixing, Fastformer, SummaryMixing, or Mamba. The
small models have 12 conformer layers and the large models
have 24 layers. We adjust the hidden dimensions to make
all the models have around the same number of parameters,
that is, 95M and 315M for the small and large ones respec-
tively. The detailed list of hyperparameters can be found in
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Base Models (~95M) Large Models (~315M)

Fig. 1: Inference speed and peak memory of BEST-RQ base and large models with various types of attention. Input length is
increased from 10 to 80 seconds. Multi-head self-attention (MHSA) requires significantly more time and VRAM as input size
increases where as the alternatives do not.

the open-sourced SpeechBrain recipes.

Pre-training details. We pre-train all our models for the
same amount of steps, set to 200k using the 960 hours of
training data from the LibriSpeech [29] dataset. Although
200k steps is a lower number than other state-of-the-art mod-
els trained for 400k or 800k steps [12, 6], previous research
has empirically shown that, 200k steps is sufficient to com-
pare SSL model performance [8, 13]. Dynamic batching is
used, meaning audio files are grouped or bucketed together
with those of a similar length, and the number of samples per
batch varies based on the bucket size in order to keep the num-
ber of seconds of input per batch similar. In our experiments,
and following the literature [12], we set the batch size to 1.7
hours for all models.

4.2. Downstream Tasks and Metrics

For the downstream evaluation we use a portion of the tasks
from the Multi-Probe Speech Self-Supervision benchmark
or MP3S [18]. In MP3S, pre-trained models are frozen and
a learned weighted sum of the outputs of the hidden layers
of the pre-trained models are fed into a downstream model
called a probe. Because results were shown to vary depend-
ing on the probe’s architecture, for each task two probes are
provided. Furthermore, and as SSL models are commonly
fine-tuned with the downstream use case, we added an evalu-
ation with a full fine-tuning for ASR.

Automatic Speaker Verification (ASV) is a binary classifi-
cation task where given 2 utterances, the goal is to determine
whether the speakers are the same. The evaluation metric for
ASV is the Equal Error Rate (EER). For the dataset, we use
VoxCeleb1 [30], which is made of utterances from celebrities
sourced from YouTube. The dataset is divided into train and
test splits, which we used accordingly. The probes for this
task are the X-Vectors [31] and ECAPA-TDNN [32].

Intent Classification (IC) is a classification task of pre-
dicting the main purpose or objective of an utterance. We
use accuracy as the evaluation metric. For this task, we use
the SLURP dataset [33] containing 18 intents coming from
single-turn user interaction with a voice assistant. Some ex-
amples of intents are email, calendar, or play (as in play a
song). The probes for this task are a linear probe, in which
the output of the SSL model are average-pooled along the
time dimension and then passed into a linear classifier, and
an LSTM probe, which consists of a two-layered BiLSTM
followed by a linear classification layer.

Emotion Recognition (ER) is the task of predicting the emo-
tion of a speaker. Similar to IC, we use accuracy to measure
performance. We use the IEMOCAP dataset, which consists
of 10 actors performing scripts with four different emotions
(neutral, happy, sad and angry). The probes for this task are a
linear probe, like IC, and an ECAPA-DNN probe, like ASV.

Automatic Speech Recognition (ASR) is the task of tran-
scribing what was said in an utterance. For ASR, we measure
performance by the word error rate (WER). We use the Lib-
riSpeech train-clean-100 for training, dev-clean for valida-
tion, and test-other for final testing. We report on the final test
WER without a language model and with the official 4-gram
language model2 using beam search and shallow fusion. Also,
and to test performance in low-resource and out-of-domain
settings, which is one use-case of SSL models, we use the
two low-resource language ASR datasets proposed in MP3S,
Welsh and Basque from the CommonVoice 11.0 dataset [34].
For LibriSpeech, we use the 2-layered BiLSTM (LSTM) and
ContextNet [35] probes, and for CommonVoice we use the
linear and LSTM probes offered by MP3S. As mentioned, it
is common for pre-trained models to be fine-tuned on a given
task instead of being frozen. As a representative of this, we
fine tune the models using the 100 hours of labeled data in

2openslr.org/11/
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Table 1: Results of various alternatives to MHSA for speech SSL models on the MP3S benchmark. Base models are set to have
around 94M parameters and large models, denoted -LG, around 315M. Linear complexity alternatives perform competitively
with multi-head self-attention (MHSA) even surpassing depending on the task and probe.

Model/Task Specs LibriSpeech train-100 ASR CommonVoice VoxCeleb SLURP IEMOCAP
Metric WER ↓ WER ↓ WER ↓ EER ↓ Acc. ↑ Acc. ↑

1st Probe LSTM Lin. Lin. Xvectors Lin. Lin.
# Params. Clean Clean LM Other Other LM Welsh Bask ASV IC ER

MHSA 94.0M 10.31 6.88 24.95 18.54 80.04 82.56 9.36 50.3 60.1
HyperConf 94.3M 10.96 7.24 25.82 19.05 79.65 81.41 8.54 53.2 60.1
Fastformer 93.9M 13.21 8.59 33.11 24.24 82.03 84.62 12.27 36.2 56.4

SummaryMix 94.1M 11.92 7.76 28.25 20.80 79.97 81.99 11.13 52.1 63.0
Mamba 94.2M 10.46 6.90 26.00 18.88 80.71 83.66 11.91 53.5 64.10

MHSA-LG 313.5M 7.10 4.98 17.63 12.92 84.46 88.88 8.60 54.8 62.1
HC-LG 315.4M 7.73 5.47 18.39 13.83 77.66 79.94 8.64 62.3 62.8

Fastformer-LG 315.9M 18.74 11.83 41.07 30.55 82.85 84.59 10.13 34.5 56.9
SummaryMix-LG 313.7M 7.22 5.04 17.67 13.14 76.94 78.88 8.30 62.8 65.3

Mamba-LG 314.9M 7.84 5.23 20.57 14.66 80.86 84.66 10.54 57.7 66.15
2nd Probe Contextnet LSTM LSTM ECAPA LSTM+Lin. ECAPA

Time(h) Mem(GB) Clean Clean LM Other Other LM Welsh Bask ASV IC ER
MHSA 453 8.86 10.10 6.30 22.84 16.83 57.78 50.24 4.37 74.9 60.83

HyperConf 438 8.60 10.66 6.78 23.46 17.54 56.74 48.39 3.65 76.9 60.10
Fastformer 357 7.25 13.10 8.10 29.98 22.75 59.14 52.59 4.84 68.3 54.30

SummaryMix 368 7.68 11.55 7.21 25.13 18.72 58.24 50.05 4.09 76.0 64.34
Mamba 427 6.62 10.27 5.96 23.93 16.37 55.22 47.51 4.51 76.2 63.05

MHSA-LG 973 20.70 7.02 4.40 15.78 11.82 58.39 50.35 3.96 74.3 63.74
HyperConf-LG 1033 22.28 7.62 4.86 16.79 12.48 55.75 47.99 3.45 78.0 64.62
Fastformer-LG 780 18.76 18.41 10.97 38.64 28.92 61.18 54.49 4.26 68.6 55.44

SummaryMix-LG 805 19.49 6.79 4.38 15.69 11.83 58.24 48.59 4.05 78.6 65.21
Mamba-LG 1010 16.99 7.54 4.51 18.49 12.63 55.42 47.59 3.76 78.1 64.21

the train-clean-100 split of LibriSpeech and evaluate on the
test-clean and test-other splits. The downstream architecture
for this task is a feed-forward neural network with CTC loss.

5. RESULTS

We first evaluate the speed and memory gains on a controlled
toy task (Figure 1). The findings are then extended to real
SSL pre-training and the MP3S benchmark.

Speed and Memory Evaluation. We give the models ran-
domly generated data of lengths that range from 10 to 80
seconds with 10 seconds intervals. We set the batch size to
6, which was chosen to prevent running out of memory too
quickly with MHSA. We perform 10 runs at each input length
and time the forward pass as well as measure the VRAM con-
sumption. Only the forward pass is evaluated to concur with a
deployment scenario. Averages of computation time and peak
VRAM over the 10 runs alongside the 95% bootstrapped con-
fidence interval are plotted in Figure 1. Measurements were
taken on an isolated node with a Nvidia A100 80GB GPU.

For input sequences of 10 seconds, the amount of time
and VRAM needed is relatively similar for all models. How-
ever, a difference starts to appear with 20 seconds, where the

alternatives, on average, use 24% less memory, and run 7%
faster relative to MHSA. On the other extreme, at an input of
80 seconds, the alternatives use on average 64% less memory
and run 65% faster. SummaryMixing and Fastformer were
the fastest compared to MHSA with 15% and 11% increase in
speed with an input of 20 seconds and 70% and 71% increase
in speed at 80 seconds, respectively. In terms of memory,
Mamba and Fastformer proved to be the most memory effi-
cient with 28% and 29% decrease in peak memory with an
input of 20 seconds, and 67% and 66% decrease in memory
at 80 seconds, respectively. These findings, however, need
to be validated with real-scale experiments to make sure that
these alternatives can reach decent downstream performance.

For pre-training time estimates, we run 5 epochs and mea-
sure the time and max VRAM on Nvidia V100 32GB GPUs
keeping the batch size at 1.7 hours as in the full pre-training.
We scale these numbers up to 200k steps to get an estimate of
the full number GPU hours. All of the alternatives prove to
be faster and use less memory except the HyperMixing-LG
and Mamba-LG models. We report these in Table 1.

Speech Recognition on LibriSpeech. With the LSTM probe
(Table 1), MHSA performed better than Mamba, HyperMix-
ing, and SummaryMixing. For the base models with the



Model Fine-Tune LibriSpeech train-100
Clean Clean LM (C.I.) Other Other LM

BRQ 7.01 5.35 (± 0.26) 16.98 13.55
HyperConf 8.22 5.77 (± 0.28) 19.29 15.03
Fastformer 9.32 6.82 (± 0.31) 22.75 17.95

SummaryMix 8.72 6.30 (± 0.28) 21.78 16.97
Mamba 7.61 5.50 (± 0.28) 19.97 15.37

BRQ-LG 5.03 3.98 (± 0.21) 11.52 9.42
HyperConf-LG 5.87 4.54 (± 0.32) 13.13 10.78
Fastformer-LG 13.16 9.89 (± 0.34) 31.91 26.75

SummaryMix-LG 5.28 4.20 (± 0.25) 12.80 10.50
Mamba-LG 5.59 4.48 (± 0.25) 15.47 12.66

Table 2: Results with fine-tuning on LibriSpeech train-100.
For the test-clean set, we report th confidence interval (C.I.).

Contextnet probe, the base version of Mamba outperformed
MHSA. For larger models with the Contextnet probe, Sum-
maryMixing performed better than MHSA except with the
LM on the test-other split, in which SummaryMixing was
0.01 behind MHSA. Despite a dedicated parameter tuning,
the large Fastformer falls significantly behind the others.

We then fine-tuned the SSL models on the train-100 sub-
set of LibriSpeech (Table 2). Confidence intervals come from
1000 bootstraps on the test-clean set with a LM. Interest-
ingly, the confidence intervals of HyperMixing and Mamba
base models and the SummaryMixing Large model over-
lap with MHSA best performance. It is therefore unclear if
MHSA would always outperform these alternatives.

Speech Recognition on CommonVoice. This dataset tells
a different story and we hypothesis that this is due to a ma-
jor issue with most speech SSL model benchmarks. Indeed,
Librispeech is always used both during the pre-training and
downstream evaluation, introducing a clear bias. With Com-
monVoice (Table 1), and with both probes, MHSA is not the
best model anymore. With the linear probe, HyperConformer
and SummaryMixing both performed better than MHSA on
Welsh and Bask. With the LSTM probe, Mamba performed
the best followed by HyperMixing, then SummaryMixing or
MHSA depending on the language. This demonstrates the
ability of these alternative methods to generalize well to out-
of-domain and low-resource datasets compared to MHSA.

Speaker Verification. As for CommonVoice, results varied
depending on the probe used, however, MHSA clearly is not
the best performing solution (Table 1). For the ECAPA probe
HyperMixing proved to be the best with an EER of 3.65
and 3.54 for the base and large models respectively. With
the Xvectors probe, HyperMixing performed best out of the
small models with an EER of 8.54 and for the large model
SummaryMixing performed best with and EER of 8.30.

Intent Classification. The accuracies observed on this task
validate our previous findings (Table 1). All alternatives, ex-
cept Fastformer, and with both probes performed significantly
better than MHSA.

Emotion Recognition. This task tells a similar story to in-
tent classification, but with a slightly different leader board
(Table 1). Again, MHSA is not the best performing solu-
tion. Indeed, Mamba performed the best with the linear probe
reaching an accuracy of 64.10% and 66.15% for the base
and large model respectively, compared to 60.1% and 62.1%
for MHSA. For the ECAPA-TDNN probe, SummaryMixing
performed the best with and accuracy of 64.34% and 65.21%
for the base and large model respectively.

6. DISCUSSION AND CONCLUSION

One of the goals of SSL pre-training is to develop a model
that can represent data without the need of labeled data in
a way that is useful for a variety of downstream tasks. As
this process is expensive, making SSL speech models less re-
source intensive is an active area of research. Part of this ex-
pense is due to multi-head self-attention. While alternatives
exist, when it comes to speech tasks, they have only been
applied in fully supervised tasks. In this work, we explore
replacing multi-head self-attention with four state-of-the-art
alternatives: HyperMixing, Fastformer, SummaryMixing and
Mamba in a SSL setting for speech tasks. We show that for
sequences 20 seconds or more these alternatives are substan-
tially faster and consume less memory. Based on the toy
test, and considering that about 75% of LibriSpeech is below
15 seconds, we believe that would see a greater difference in
the pre-training time and memory when pre-training with a
set such as [11] where all pre-training audio was cropped to
be between 32 and 64 seconds.

However, for small input under approximately 20 seconds
the amount of time and memory a model consumes are all rel-
atively similar. This threshold, however, could reduce drasti-
cally if the model does not combine Mel Filterbanks with a
two-dimensional CNN, as the acoustic feature extractor plays
a critical role in the length of the sequence arriving to the self-
attention module. For instance, one may expect that replac-
ing this CNN with a one-dimensional one would bring this
threshold to 10 seconds. Nevertheless, many files in common
speech datasets are shorter than 20 seconds and many speech
tasks do not require global context from anything over 20 sec-
onds. Splitting audio files based on silence for long audio file
processing or streaming is also possible which brings to ques-
tion the necessity of these alternatives to MHSA.

We believe that future work could involve processing
large audio files and developing Large Audio Foundation
Models, similar to research trends to include more context in
Large Language Models (LLM). With this trend in mind, one



could imagine doing common LLM tasks, such as summa-
rization, that require long context directly from audio without
the need of a transcription.

Nevertheless, as a result of our findings, we believe that
unless specifically working with long audio files or from the
raw waveform, further speed and memory gains will not be
obtained by replacing MHSA with alternatives with linear
complexity. We believe that more efficient SSL for speech
models might be reached by other architectural changes,
pruning/quantization methods, and data selection.
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